Exercise 74

If
$$F(x) = f(xf(xf(x)))$$
, where $f(1) = 2$, $f(2) = 3$, $f'(1) = 4$, $f'(2) = 5$, and $f'(3) = 6$, find $F'(1)$.

Solution

Use the product rule and the chain rule to differentiate F(x).

$$F'(x) = \frac{d}{dx}[F(x)]$$

$$= \frac{d}{dx}[f(xf(xf(x)))]$$

$$= f'(xf(xf(x))) \cdot \frac{d}{dx}[xf(xf(x))]$$

$$= f'(xf(xf(x))) \cdot \left\{ \left[\frac{d}{dx}(x) \right] f(xf(x)) + x \left[\frac{d}{dx} f(xf(x)) \right] \right\}$$

$$= f'(xf(xf(x))) \cdot \left\{ (1)f(xf(x)) + x \left[f'(xf(x)) \cdot \frac{d}{dx}[xf(x)] \right] \right\}$$

$$= f'(xf(xf(x))) \cdot \left\{ f(xf(x)) + x \left[f'(xf(x)) \cdot [f(x) + xf'(x)] \right] \right\}$$

Evaluate it at x = 1.

$$F'(1) = f'(f(f(1))) \cdot \{f(f(1)) + [f'(f(1)) \cdot [f(1) + f'(1)]]\}$$

$$= f'(f(2)) \cdot \{f(2) + [f'(2) \cdot (2+4)]\}$$

$$= f'(3) \cdot \{3 + [5 \cdot (6)]\}$$

$$= (6) \cdot [3 + (30)]$$

$$= (6) \cdot (33)$$

$$= 198$$